



# Botulinum Toxins as Neuromodulators in Chronic Pain Management

Ramon L. Cuevas-Trisan, MD

### Learning Objectives

- Review the proven and proposed mechanisms of action of botulinum toxins (BTX)
- Contrast the different botulinum toxin products commercially available in the US
- Describe the emerging role and novel indications for the use of botulinum toxins in pain management



### Disclosures

Consultant/Speakers Bureau: Allergan, Ipsen



### **Neurotoxins as Neuromodulators**

- Emerging role of botulinum neurotoxins in the management of complex/intractable chronic pain syndromes, including neuropathic pain more so than those believed to be of muscle overactivity etiology
- Chemical neuromodulation in neurogenic inflammation
- More players: wider and more promising horizon and greater availability but greater potential for errors and problems.....



# **Botulinum Toxins in the US**

| Name                                                       | Туре | Forms                  | Process                                                        | Indications                                               |
|------------------------------------------------------------|------|------------------------|----------------------------------------------------------------|-----------------------------------------------------------|
| OnabotulinumtoxinA (Botox <sup>®</sup><br>—Allergan, Inc.) | А    | 100U, 200U,<br>50U     | Vacuum-drying<br>(NSS/albumin)                                 | Strab, CD, BS, CN7 d/o,<br>AH, Cosm, U&LLS, CM,<br>OAB/DH |
| AbobotulinumtoxinA<br>(Dysport <sup>TM</sup> —Ipsen, Ltd)  | А    | 300U, 500U             | Lyophilized<br>(fermentat/precipit/<br>dialysis/chromatography | CD, Cosm,<br>U&LLS<br>LLS (child)                         |
| IncobotulinumtoxinA<br>(Xeomin <sup>®</sup> —Merz)         | А    | 50U, 100U              | Lyophilized<br>Albumin, sucrose                                | CD, BS, Cosm, ULS                                         |
| RimabotulinumtoxinB<br>(Myobloc <sup>®</sup> —Solstice)    | В    | 2.5k U, 5k U,<br>10k U | Ferm/precipitation/<br>chromatography                          | CD                                                        |





### **BTX Uses**

- Dystonias
- Spasticity
- Tremors
- Cosmetic/wound healing
- Blapharospasm/CN VII disorders
- GI: achalasia, anismus, obesity
- GU: neurogenic bladder, vaginismus, BPH
- Pain management....

### **BTX in Pain Management**

- Myofascial pain syndromes
  - Upper back/neck
  - TOS
  - Piriformis syndrome
- CLBP
- Facial and head pain (migraines, occipital neuralgia, TN, atypical facial pain, TMJ pain)
- Intractable joint pain
- Lateral epicondylitis/plantar fasciitis
- Focal/generalized neuropathies
- Vascular pain (Raynaud's)
- Postradiation fibrosis pain

Painweek.



### Antinociception Observations Using Botox<sup>®</sup>

- Inhibition of release of AcH and sP (not NE) in rabbits (iris)<sup>1</sup>
- Inhibition of release of AcH and sP (vesicle-dependent exocytosis) in cultured DRG neurons induced by capsaicin<sup>2</sup>
- sP inhibition (vesicle fusion inhibition) in the embryonic rat DRG model<sup>3</sup>
- <sup>1</sup> Ishikawa H, et al. Jpn J Opthalmol 2000
- <sup>2</sup> Purkiss J, et al. Biochem Pharmacol 2000
- <sup>3</sup> Welch MJ, et al. Toxicol. 2000

Painweek.

# Antinociception Observations Using Botox (cont'd)

Dose dependent inhibition of CGRP in TG nerve of rats<sup>1</sup>

- Block release of glutamate induced by formalin and decreased activity at the WDR neuron upon stimulation (second pain)<sup>2</sup>
- Fos, a product of c-fos gene that is expressed with neuronal stimuli, was prevented<sup>3</sup>

<sup>1</sup> Durham P. Cephalgia 2003; 23(7): 690 <sup>2</sup> Aoki KR. Headache 2003; 43(1): S9-15 <sup>3</sup> Cui ML. Pain 2004; 107(1-2): 125-33











### Headaches

- FDA-approved for chronic migraine prophylaxis
- Not tension-type HAs
- Mechanism proposed to be related to action at the TG nucleus
- Still difficult to predict responders
  - -Concept of "exploding" vs "imploding"
  - -Ocular migraine/menstrual migraine

Painweek.

### **IHS Classification**

- A1: Migraine
  - -A1.1. Migraine w/o Aura
    - Pure menstrual
    - Menstrually-related
    - Nonmenstrual
  - -A1.2. Migraine w/ Aura
  - -A1.5. Chronic Migraine





# **BTX in MPS: Theories**

- Reduction of intrafusal muscle spindle discharges
- Changes in sympathetic transmission
- Reduction of the inhibitory effect of Renshaw cells on the la inhibitory interneurons
- Reduction in muscle spasm
- Analgesic effects of BTX



### Myofascial Pain Syndromes

- Most consistent and better studied responses in clinical practice have been in the cervicothoracic region<sup>1</sup>
- Compartment techniques vs trigger point approach midbelly of muscle, not tender areas (TPIs); may be targeting motor points<sup>2</sup>
- Follow the pain but beware of pain referral patterns<sup>3</sup>
- <sup>1</sup> De Andres et al J Pain. 2003 Jul-Aug;19(4):269-75.
- <sup>2</sup> Lang A. Am J Pain Medicine 2000; 10:105-109
- <sup>3</sup> Reilich J Neurol 2004; 251(Suppl 1): I36-I38

Painweek.

### **Forward-Head Syndrome**

- Cervical protraction, capital extension with shortened cervical paraspinals, elevated and shortened upper trapezius and levator scapula, scalene and pectoral shortening
- Eccentric lengthening of the rhomboids and middle trapezius
- Scapular protraction/internal rotation of the shoulder girdles















# <section-header><section-header>



### **Intractable Joint Pain**

- Degenerative joint disease
- Limited/emerging evidence<sup>1</sup>
- Working theory: inhibition of low-grade inflammatory mediators
- Role of IL-1

-Blocking of IL-1 receptor signaling complex<sup>2</sup>

<sup>1</sup> DePuy T, et al. Am J Phys Med Rehabil 2007; 86 (10): 777-783.

<sup>2</sup> Namazi H, Majd Z. Am J Immunol. 2005. 1(2):94-95



### **BTX-A** in Joint Pain

- Multiple retrospective / open label / small case series<sup>1</sup>
- Various joints:
  - hip, knee, ankle, shoulder, zygapophyseal, sternoclavicular, sacroiliac
- Prospective RCT in Mod-Sev knee pain 2<sup>ary</sup> to OA<sup>2</sup>
- N = 23 per group; 100U IA Botox vs education
- Botox: superior providing pain relief and improved function short- (1 week) and long-term (6 months)



<sup>1</sup>Mahowald M, Singh J, Dykstra D.*Neurotox Res* 2006 <sup>2</sup> Lin-Fen H, et al. *PM*&*R* 2016







### **Other Painful Syndromes**

### Painweek.

# <section-header> Lateral Epicondylitis Wong<sup>1</sup>: 60 U Dysport<sup>®</sup> RCT; N = 60 (30 placebo-saline/ 30 active), significant differences in pain reduction (66% in BTX group) at 4 & 12 weeks; no statistically significant difference in grip strength in 13% of BTX group). Hayton<sup>2</sup> - 50 U Botox<sup>®</sup> RCT; N = 40 (20 - placebo / 20 - active - 1M 5cm distal to max point of tenderness At 3 months: no significant difference in grip strength, pain, and QOL. Nong SM et al. Ann Intern Med. 2005 Dec 6;143(11):793-7. Hayton MJ, et al. J Bone Joint Surg Am 2005; 87(3): 503-7.



### **Facial Pain**

- Atypical, TN, TMJ (including bruxism<sup>1</sup>), etc
- Various studies
- Dose: highly variable; 20-150 U
- Injection site: variable; depends on painful area; SQ/intradermal<sup>2,3</sup>
- Maintain cosmetic symmetry

 $^1$  Guarda-Landini, et al. J CranioMand Prac 2008  $^2$  Cuevas-Trisan R. AAPM Meeting 10/07, LV, NV 3 Singh. F1000 Research 2013.







# **Raynaud's Syndrome**

- Retrospective series (N=33) severe Raynaud's<sup>1</sup>
- Failed conservative and interventional therapies; some amputations
- Technique using BTX-A 100U
- 85%: significant decreases in pain / improvement in perfusion
- Duration of relief averaged
- 16.3±3.2 wks (median 16 wks)









### **Other Uses**

- Stump / neuroma pain
- Intractable pes anserinus bursitis
- Other focal / generalized peripheral nerve injuries

### Painweek.

### **Peripheral Neuropathies**

- DPN<sup>1,2</sup>
- Dysport 100 U intradermal vs saline; n=20/group
- Statistically significant decrease in neuropathic symptoms in Dysport group
- Botox 50 U intradermal vs saline; n = 18/group
- Statistically significant decrease in neuropathic symptoms in Botox group
- PN3
- Dysport up to 300 U vs Saline; n=34 vs 32/group x 2 (12 wks apart)
- Statistically significant decrease in neuropathic pain in Dysport group
  - 1. Ghasemi et al. J Res Med Sci 2014
  - 2. Yuan, et al. Neurology 2009
  - 3. Attal, et al. Lancet Neurology 2016

### **Focal Neuropathies**

- Focal neuropathy case painful paresthesias/dysesthesias in distal leg
- Excellent relief with SQ injections to affected area



Painweek.

### **Current Clinical Trials**

- Raynaud's-Southern Illinois Univ, Emory, Johns Hopkins
- Skin injections for SCI-related pain—Mt. Sinai, NY
- Chronic neck and back pain—VA Connecticut
- Pelvic pain in endometriosis—NINDS (NIH)
- Shoulder & knee OA pain—Minneapolis VAMC
- Peripheral neuropathic pain / Painful diabetic neuropathy-Taipei Medical Center
- Cervicobrachial MPS—UCLA / TOS—University of British Columbia
- Neuroma pain—Southern Illinois Univ/Stanford
- LE CRPS—Stanford
- TKR pain—University of Minneapolis-completed
- Ganglion impar injections for proctalgia—Nantes University
- Psoriasis—University of Minnesota
- Peyronie's disease, vaginismus, restless legs, allopecia aereata

Source: NIHclinicaltrials.gov



### Thanks!