

Prime Time or Too Soon?

Pharmacogenomics in Pain Management

Courtney Kominek, PharmD, BCPS

1

Title and Affiliation

Courtney Kominek, PharmD, BCPS Clinical Pharmacy Specialist – Pain Management Harry S. Truman Memorial Veteran's Hospital Columbia, MO

Painweek.

2

Disclosure

Honoraria: Quest Diagnostics

The views and opinions expressed in this presentation are those of the authors and do not necessarily reflect the official policy or position of any agency of the United States government, including the Department of Veterans Affairs, as well as employers, employee affiliates and/or pharmaceutical companies mentioned or specific drugs discussed.

Painweek.

Learning Objectives

- Review the role of pharmacogenetic testing in pain management
 Discuss relevant pharmacogenetic variants that impact pain management medications
- Provide recommendations for medication optimization based on pharmacogenetic results

Painweek.

4

Genetics	
Age	
Liver funct	ion
Diet	
Concomita	nt therapy
Body size	
Alcohol us	e
Kidney fun	ction

Drug Metabolizer Phenotypes Poor metabolizer (PM) Intermediate metabolizer (IM) Normal metabolizer (NM) Rapid metabolizer (RM) Ultrarapid metabolizer (UM) Indeterminate metabolizers Painweek, Brand E, Halford Z, Clark M, Hendon C. Pharmacogenomics in Pain Management: A Review of Relevant Gene-Drug Associations and Clinical Considerations. Annals of Pharmacotherapy 2021, Vol. 55(12) 1488–1501.

7

Testing

- Preemptive vs reactive testingSingle gene vs. panel
- Samples: buccal swab, saliva, blood Phenoconversion

Reeling NJ, Rosenthal MM, Strum D Genetic Testing Registry. Bethesda Traiker DJ, Strikeo J, Hachar H, Brin Nichrleyr MF, Fromman u 19;21(5):1224-1232. , U.S National Library o hathol. 2020;3:117-129. ology Informat ars. Adv Mole

d 2021 June 15

Testing	
Not routineLaboratory vs.	direct to consumer
 Lack of guidant Polypharmacy 	ce on who to test
-Avoid significa -History of mult	nns int adverse effects ijole unexplained adverse effects
-Medications w	ith specific dosing recommendations
 Reasons to tes 	t
 Minimize adve 	arse effect
 Help with pres 	cribing or deprescribing
BINWEEK.	Keeling NJ, Rosenthal MM, Strum DW, Patel A, Naidar GE, Nottman JM. Genet Med. 2019;21(5):1224-1222. Genetic Tasting Registry, Betheads, MD: National Center for Distectionalogy Information, U.S. National Literry of Medicine. Accessed 2021 June 15. Thake OL, Save J, Natoh A. El Inging pharmacogenetics to prescriber. Are Mole C Pathol. 2025;1:17-18.

Ethical and Legal Considerations

Genetic Information Nondiscrimination Act (GINA) of 2008
 Prevents discrimination for health insurance and employment
 Does not apply to life, disability, or long-term care insurance

Painweek, Silva M, Jackson J, Mitrola J. Ethical issues in pharmacogenomics. Pharmacy Times. 2015;81(3). Accessed 16 June 2021.

10

Single gene, mult "Medications bein necessary, appro- known to have ge Documentation re	i-gene, combination tests g considered for use (or already in use) that are medically priate, and approved for use in patient's condition and are ne-drug interaction through FDA or CPIC guidelines" iquired
-Diagnosis approp	riate for medications
 Initial personalize Provider must do 	d decision on patient-specific factors cument medication and indication for the test being performed

_)^	dvocating use of testing
C	Ordering testing
$\left(\right)$	Optimizing medications
(Supporting research an
Ċ	Providing education
5	Communicating to healthcare team

Case #1

- JP is a 55 yo female with diabetes and diabetic peripheral neuropathy
 Prescribed gabapentin 600 mg PO TID
- Pain is 8/10 and requesting additional pain relief
- You're considering adding an antidepressant
- Previous trial of paroxetine for depression (in remission) with significant side effects

Painweek.

16

Phenotype	Implication	Therapeutic recommendation*	Strength of recommendation
CYP2D6 Intermediate Metabolizer (1-13% of patients)	Reduced metabolism to less active metabolites Higher plasma concentrations of active drug increase likelihood of adverse drug event (ADE)	Consider 25% reduction in starting dose Use therapeutic drug monitoring to guide adjustments	Moderate
CYP2D6 Poor Metabolizer (1-10% of patients)	Greatly reduced metabolism Higher concentrations increase likelihood of ADE	Avoid due to potential for ADE Consider alternative not metabolized through CYP2D6 If use TCA, reduce dose 50% and use therapeutic drug monitoring	Strong

^T Dating mecommendations apply to use of higher initial dases used by management of agreesion				
Phenotype	Implication	Therapeutic recommendation*		
CYP2C19 Ultrarapid Metabolizer CYP2C19 Rapid Metabolizer (2-30% of patients)	Increased metabolism of tertiary amines May affect response or side effects	Avoid tertiary amines due to possibility for suboptimal response Consider alternative TCA Nortriptyline and desipramine without CYP19 involvement If using tertiary, use therapeutic drug monitoring to guide		
CYP2C19 Normal Metabolizer (35-50% of patients)	Normal metabolism of tertiary amines	Initiate with standard doses		
WEEK. Clinical Phoene symposic looking	rtn ferstaan hin falster of the	nd/2076/99204vp209nd:page of tricyclic		

Phenotype	CYP2D6 Ultrarapid Metabolizer	CYP2D6 Normal Metabolizer	CYP2D6 Intermediate Metabolizer	CYP2D6 Poor Metabolizer*
CYP2C19 Ultrarapid Metabolizer	Avoid amitriptyline	Consider alternative not metabolized by CYP2C19	Consider alternative not metabolized by CYP2C19	Avoid amitriptyline
CYP2C19 Normal Metabolizer	Avoid amitriptyline. If used, need higher dose	Initiate at standard dose	Consider 25% reduction in starting dose	Avoid amitriptyline. If amitriptyline used, consider 50% reduction
CYP2C19 Intermediate Metabolizer	Avoid amitriptyline	Initiate at standard dose	Consider 25% reduction in starting dose	Avoid amitriptyline. If amitriptyline used, consider 50% reduction
CYP2C19 Poor Metabolizer	Avoid amitriptyline	Avoid amitriptyline. If amitriptyline used, 50% dose reduction	Avoid amitriptyline	Avoid amitriptyline

Evidence in Opioid Prescribing with CYP2D6

• 375 patients > 18 years of age with chronic pain receiving an opioid Buccal swab for CYP2D6 testing vs placebo swab

Pharmacists provided recommendations based on phenotype

Painweek, Smith DM, Weitzel KW, Elsey AR, et al. CYP2D8-guided opiaid therapy improves pain control in CYP2D6 interme pagmatic clinical trial. Genel Med. 2019;21(6):1842-1850.

-Poor metabolizers (PM) -Ultrarapid metabolizer (UM)

- -Intermediate metabolizer (IM) (if not controlled)
- Results

-IM/PM on tramadol or codeine at baseline in CYP2D6 group had significantly more patients achieving 30% reduction in pain compared to normal care (CYP2D6 group 7/29 24% vs normal care group 0/16 p=0.04)

diate and poor metal

ers: a

33

CYP2D6 – Codeine

Phenotype	Recommendations	Strength	
CYP2D6 ultrarapid metabolizer	Avoid codeine. Consider non-tramadol opioid	Strong	
CYP2D6 normal metabolizer	Use codeine label recommendations	Strong	
CYP2D6 intermediate metabolizer	Use codeine label recommended age-specific or weight-specific dosing. If no response, consider a non-tramadol opioid	Moderate	
CYP2D6 poor metabolizer	Avoid codeine. Consider non-tramadol opioid	Strong	

Phenotype	Dose adjustments	Strength of recommendation No recommendation	
CYP2D6 ultrarapid metabolizer	No recommendation Minimal evidence of adverse effects or impact on analgesia		
CYP2D6 normal metabolizer	Standard dosing	Strong	
CYP2D6 intermediate metabolizer	Standard dosing	Optional	
CYP2D6 poor metabolizer	Standard dosing If no response and opioid appropriate, use non-codeine and non-tramadol opioid	Optional	

CYP2D6 – Tramadol

Phenotype	Recommendations	Strength of Recommendation
CYP2D6 Ultrarapid metabolizer	Avoid tramadol	Strong
CYP2D6 Normal metabolizer	Standard dosing	Strong
CYP2D6 Intermediate netabolizer	Standard dosing If no response, consider non- codeine opioid	Optional
YP2D6 poor metabolizer	Avoid tramadol	Strong

36

Catechol-O-methyltransferase (COMT)

• Metabolism of dopamine, norepinephrine, epinephrine

Impacts pain sensitivity and response to medications

Most common variant 472G>A, rs4680 reduces enzyme activity 3-4 times
 Differing outcomes on COMT variants and opioids

• No guidelines on COMT and opioids

Painweek, Nerenz RD. Tsongalis GJ. Pharmacogenetics of opioid use and implications in pain management. JALM2018:622-632. Of oregou A. Ettienne EB. Pharmacogenomics and morphine. J Clin Pharmacol. 2021.

37

OPRM-1

Gene for mu-opioid receptor

- Primary site of action of opioids
- Most frequent polymorphism is OPRM1 118 A>G (rs1799971)
- Mixed results in studies
- Opioid responder: 118A/A
- Decreased opioid response: 118A/G
- Poor opioid response: 118G/G
- No guideline recommendations for OPRM-1 and opioids

PainWeek, Ofoegbu A, Etienne EB. Pharmacogenomics and morphine. J Clin Pharmacol. 2021.

No recommendations COMT Methadone OPRM Oxycodone

39

NSAID	Half-life (h)	Metabolic Pathway	
Celecoxib*	11-16	CYP2C9 major, CYP3A4 minor	
Diclofenac	1-2	CYP2C9	
lbuprofen*	2-4 CYP2C9, CYP2C8		
Indomethacin	4.5-6	CYP2C9	
Meloxicam*	15-20	CYP2C9 major, CYP3A4 minor	
Nabumetone 22-30 CYP1A2, CYP2 Naproxen 12-15 UGT2B7, CYP		CYPIA2, CYP2C9	
		UGT2B7, CYP1A2	
Piroxicam*	30-86	CYP2C9	
Sulindac	7 (metabolite 16)	Multiple	

		CPIC guidelines available to guide selection and dosing
		Supplemental material: Clinical Pharmaconsentic Implementation Consortium (CPIC) Guideline for CVP2C9 and nonsterroidal anti-inflammatory dourse
•	<u>~ 1</u>	

Phenotype	Implication	Therapeutic recommendation	
CYP2C9 normal metabolizer	Normal metabolism	 Standard dosing 	
CYP2C9 intermediate metabolizer Activity score of 1.5	Mildly reduced metabolism	Standard dosing	
CYP2C9 intermediate metabolizer Activity score of I	Moderately reduced metabolism → Higher concentrations → Toxicity	 Initiate at 50% standard dose Titrate to 50% of maximum dose Select NSAID not metabolized by CYP2C9 	
CYP2C9 poor metabolizer	Significantly reduced metabolism → Prolonged half-life → Toxicity	 Select NSAID not metabolized by CYP2C9 or metabolized by CYP2C9 with shorter half-life 	

Back to Patient Case

Pharmacogenomics is one part of clinical decision making

Pharmacogenomics and tolerability Consider comorbidities

Consider alternate medication options

DuloxetineTopicals

What if the patient didn't have CAD and CKD? Naproxen

Painweek.

45

46

Human Leukocyte Antigen (HLA)

Part of human major histocompatibility complex (MHC)

Helps recognize self vs. non-self

Antigen presents via cell surface proteins

Usually intracellular and identified as "self"

Non-self leads to immune response

Cutaneous reactions

Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN)
 Drug reaction with eosinophilia and systemic symptoms (DRESS)
 Maculopapular exanthema (MPE)

Painweek. Philips EJ. Sukasem C, Whirk-Carrillo M et al. Clinical Pharmacogenetics Implementation Consortium Guideline for HLA Genotype and Use of Carbanacepine and Oserkearepin: 2017 Update. Cline Pharmacol Ther. 2018;103(4):574-581.

48

Genotype	Implication	Therapeutic Recommendation
HLA-B*15.02 negative and HLA- A*31:01 negative	Normal risk	Use standard dosing
HLA-B*1502 negative and HLA- A*31.01 positive	Greater risk of SJS/TEN, DRESS, and MPE	CBZ naïve, consider alternative medications and avoid CBZ If use CBZ, increase monitoring and discontinue ASAP if ADE CBZ experienced for 3 months, low risk
HLA-B*15.02 positive and any HLA-A*31.01	Greater risk of SJS/TEN	CBZ naïve, avoid CBZ experienced for 3 months, low risk

Genotype	Implication	Therapeutic recommendation
HLA-B*15.02 negative	Normal risk	Use standard dosing
HLA-B*15.02 positive	Greater risk of SJS/TEN	If OXCBZ naïve, avoid. If OXCBZ
		months, low risk

Learning Assessment Question #1

- Guidelines recommend pharmacogenetic testing in pain management in which of the following situation
- A. No guideline recommendations on who and when to test
- B. Patient with at least 5 adverse drug reactions
- C. Patients taking more than 5 medications
- D. All patients before being prescribed tramadol or codeine

Painweek.

54

Learning Assessment Question #2

• DK is a 47 yo male with recent humerus fracture. Patient a known CYP2D6 poor metabolizer. What opioid do you recommend for management of his acute pain?

- A. Codeine
- B. Tramadol
- C. Morphine D. Fentanyl patch

Painweek.

55

Learning Assessment Question #3

• BT is a 55 yo female with knee osteoarthritis. She reports past use of piroxicam with significant side effects. She is hesitant to try another NSAID. You suggest pharmacogenomic testing and she consents. Testing shows patient is a CYP2C9 poor metabolizer

• What other PO NSAID is best for this patient?

A. Naproxen

- B. Meloxicam
- C. Celecoxib D. Ibuprofen

Painweek.

Learning Assessment Question #4

- 55 year-old patient with trigeminal neuralgia. The patient is HLA-B*15:02 positive and HLA-A*31:01 positive. What options are safest to prescribe? A. Oxcarbazepine
- B. Carbamazepine or Oxcarbazepine
- C. Carbamazepine D. Gabapentin

Painweek.