

Pain Pathways Made Simple

David M Glick, DC, DAAPM, CPE

Disclosures

Nothing to disclose

Learning Objectives

- Differentiate between nociceptive and neuropathic pain
- Describe the process of pain transmission
- Identify the specific pain pathways that can be acted upon by pharmacotherapy and nonpharmacologic treatments

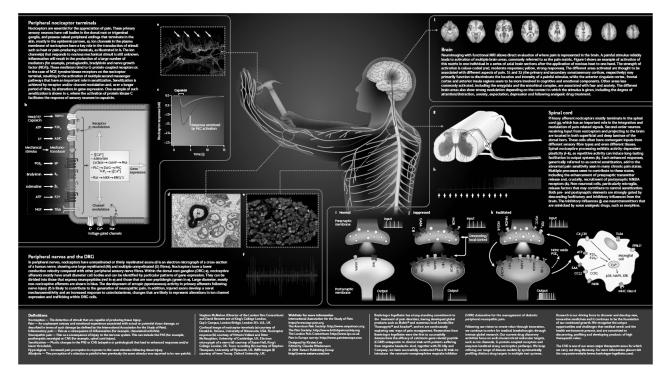
Classification of Pain

Good pain vs bad pain

Clinical Pearl

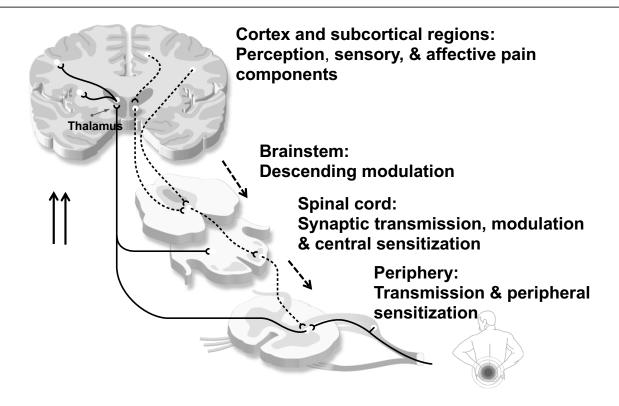
Good Pain

- Nociceptive pain: purposeful pain
 - -Eudynia: being pain linked to normal tissue function or damage
 - -Nonmaldynic pain
 - -Adaptive


Bad Pain

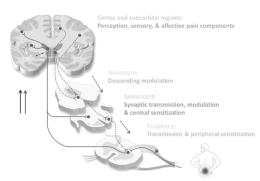
- Neuropathic pain: Nonpurposeful pain
 - -Maldynia: pain linked to disorder, illness or damage
 - le, may be abnormal, unfamiliar pain, assumed to be caused by dysfunction in PNS or CNS

Pain Mechanisms



Adapted from Nature Reviews – Neuroscience, Stephen McMahon & David Bennett, 2007.

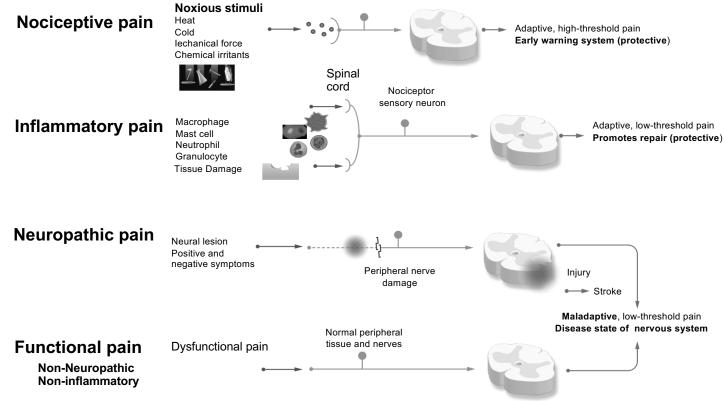
General Anatomy of Pain



Pain Roadmap:

Peripheral and Central Nervous System Landmarks

- Physiologic process involving multiple areas of the nervous system
- Bidirectional
- Involves normal as well as pathological processes
- A sensory experience associated with affective and cognitive responses
- Dynamic (ie, occurring in real time)
- Adapts or changes in response to function "neuroplasticity"



Pathophysiologic Classification of Pain

- Nociceptive purposeful pain
 - Somatic or visceral linked to normal tissue function or commensurate with identifiable tissue damage
- Inflammatory pain Usually involves tissue damage
 - Localized chemical soup of inflammatory mediators
- Neuropathic nonpurposeful pain
 - May be abnormal, unfamiliar pain, probably caused by dysfunction in PNS or CNS
- Functional Pain dysfunctional pain
 - Non-neuropathic, non-inflammatory, often ill defined

Classification of Pain

Adapted from: Woolf CJ. Ann Intern Med. 2004;140:441-451.

Nociceptive vs Neuropathic Pain

Nociceptive

Arthritis

Mechanical low back pain

Post-operative pain

Sickle cell crisis

Sports/Exercise injury

Mixed

Fibromyalgia

Headache

Low back pain

Mynfascial nai

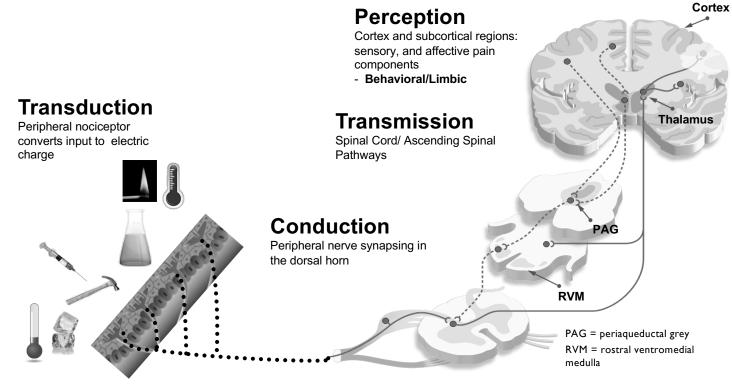
syndrome

Skeletal muscle

Neuropathic

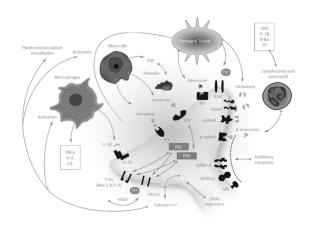
Neuropathic low-back pain

Polyneuropathy (diabetic, HIV)


Postherpetic neuralgia

Trigeminal neuralgia

Portenoy RK, Kanner RM. In: Portenoy RK, et al, eds. Pain Management: Theory and Practice. Philadelphia, PA: FA Davis Company;1996:4. Galer BS, Dworkin RH. A Clinical Guide to Neuropathic Pain. Minneapolis, MN: McGraw-Hill Companies Inc; 2000:8-9.


Pain Pathway Steps

Adapted from Scholtz J, Woolf CJ, Nat Neuroscience, 2002,5:1062-1067.

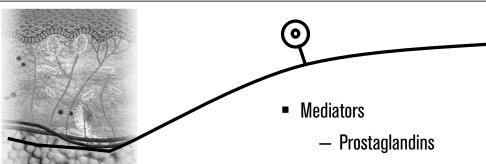
Transduction: Processing at Peripheral Nerve Endings

- Conversion of mechanical, thermal or chemical stimuli into an electric charge
- Involves
 - Receptors activated directly by stimuli
 - Injury/inflammatory response

Peripheral Sensitization

After injury, a peripheral nervous system neuron becomes abnormally sensitive to stimuli, resulting in either or both

- Decreased threshold for activation
- Increased rate of firing


Mechanism of action*

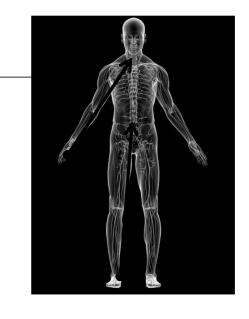
 Tissue damage releases sensitizing "soup" of cytokines & neurotransmitters

- –COX-mediated PGE2 release
 - These events are thought to be based on a number of changes at the cellular/molecular level, including changes in receptors and ion channels.

How Is Pain Transduced?

- Nociception
 - Mechanical
 - Thermal
 - Chemical

- Leukotrienes
- Substance P
- Histamine
- Bradykinin
- Serotonin
- Hydroxyacids
- Reactive oxygen species
- Inflammatory cytokines and chemokines



Conduction

Transfer of noxious impulses from primary nociceptors to cells in the spinal cord dorsal horn along the peripheral nerve.

Aδ – Fast/first pain Large diameter **C-fibers** – slow/second pain Small diameter

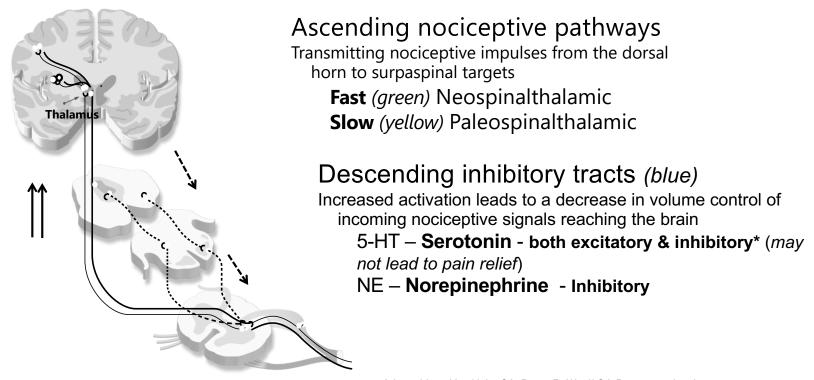
Non-nociception fibers
(Proprioception) **Aβ** – Muscle spindle, touch & kinesthesia
Larger diameter, myelinated

Vadivelu N, et al. Pain pathways and acute pain processing. In: Sinatra RS, et al, eds. *Acute Pain Management*. New York, NY: Cambridge University Press; 2009:3-20. Figure adapted from Binder A, et al. Disease mechanisms in neuropathic itch. *Nat Clin Pract Neurol*. 2008;4(6):329-333.

Primary Nociception

A-delta fibers

- Small receptive fields
- Thermal & mechanical
- Myelinated
- Rapidly conducting
 - 10-30 m/sec
- Large diameter


C-fibers

- Broad receptive fields
- Polymodal
- Unmyelinated
- Slower conducting
 - .5-2.0 m/sec
- Cross sensitized
- Small diameter

Transmission & Modulation

Adapted from Von Hehn CA, Baron R, Woolf CJ. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. *Neuron.* 2012; 23;73(4):638-652.

Transmission & Modulation

- Excitatory Transmitters
 - Substance P
 - Calcitonin gene related peptide
 - Aspartate, glutamate

Inhibitory Transmitters (descending inhibitory pathways)

- GABA
- Glycine
- Somatostatin
- a₂ agonists

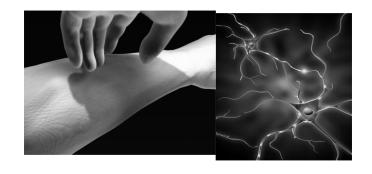
Role of Neuronal Plasticity in Pain

- Nervous system changes in
 - Neuronal structure
 - Connections between neurons
 - Quantity/properties of neurotransmitters, receptors, ion channels
- Decreases body's pain inhibitory systems (increased pain)
- Injury, inflammation, and disease are culprits
- Produces short-term and permanent changes
- Pivotal to the development of hypersensitivity of inflammatory pain
- Enables NS to modify its function according to different conditions or demands placed upon it

How Acute Pain Becomes Chronic

Peripheral sensitization

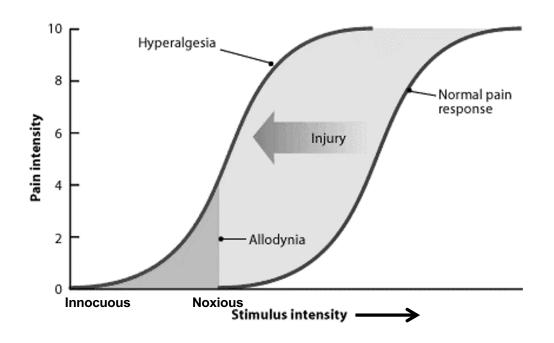
- Tissue damage releases sensitizing "soup" of cytokines & neurotransmitters
- COX-mediated PGE2 release
- Sensitized nociceptors exhibiting a decreased threshold for activation & increased rate of firing
- Central sensitization
 - Resulting from noxious input to the spinal cord
 - Resulting in hyperalgesia, & allodynia


Definitions

Hyperalgesia

 Lowered threshold to different types of noxious stimuli

Allodynia

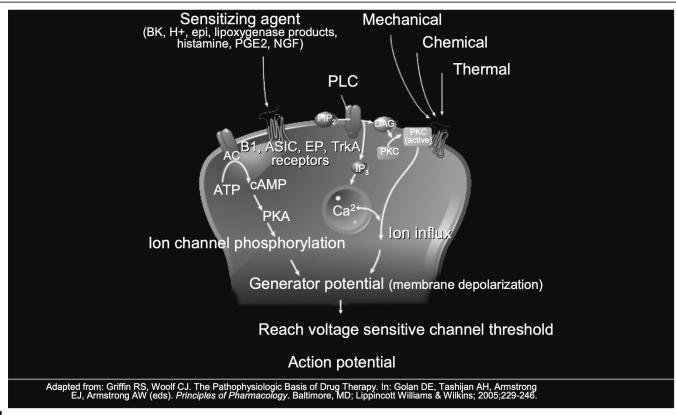

 Painful response to what should normally be nonpainful stimuli

Neuroplasticity in Pain Processing



^{1.} Wooli CJ, Saiter MW. Science. 2000;288:1765-1768

Basbaum AI, Jessell TM. The perception of pain. In: Kandel ER, Schwartz JH, et al. eds. Principles of Neural Science. 4th ed. New York, NY: McGraw-Hill: 2000:479.


^{3.} Cervero F, Laird JMA. Pain. 1996;68:13-23.

Neuroplasticity in Peripheral Pain Transmission

Peripheral Sensitization

Central Sensitization

- Activation
 - "Wind up" of dorsal horn nociceptors
- Modulation
 - Excitatory/Inhibitory neurotransmitters
- Decreased central inhibition of pain transmission
 - NE/5HT

Prime role in chronic pain, particularly neuropathic pain

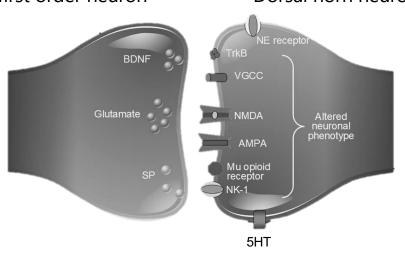
Definitions

Wind Up

- Causes long-term changes in nociceptive neurons, which become hyperexcitable such that they respond to lower stimuli
 - NMDA-type glutamate receptors play an important role in this process^{1,2,3,4}
- Prolonged opening of the ion channels enables greater influx of calcium and sodium across the post-synaptic membrane and greater excitation of nociceptive neurons^{2,3}

^{1.} Kandel ER, Schwartz JH, Jessell TM, editors. Principles of Neural Science (Fourth Edition). New York: McGraw Hill (Health Professions Division). 2000;472-491.

^{2.} Millan MJ. Progress in Neurobiology 1999:57:1-164.


^{3.} Dickenson AH. Brit J Anaesthesia 1995;75:193-200.

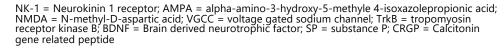
^{4.} Suzuki R and Dickenson AH. Neuroreport 2000;11:R17-21.

First Order Synapse – Dorsal Horn

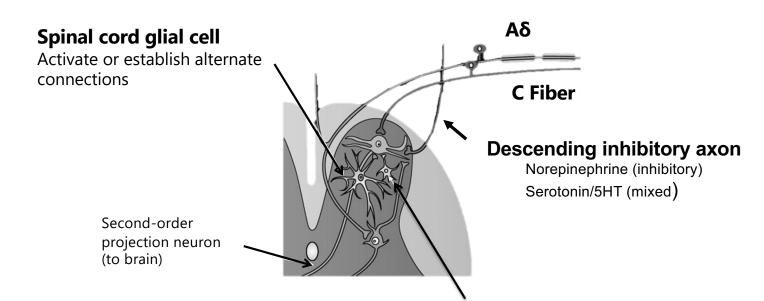
Afferent first order neuron

Dorsal horn neuron

NK-1 = Neurokinin 1 receptor; AMPA = alpha-amino-3-hydroxy-5-methyle 4-isoxazolepropionic acid; NMDA = N-methyl-D-aspartic acid; VGCC = voltage gated sodium channel; TrkB = tropomyosin receptor kinase B; BDNF = Brain derived neurotrophic factor; SP = substance P


Central Sensitization

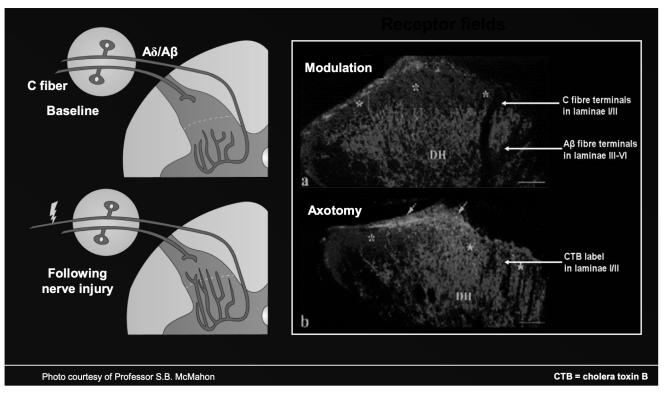
Dorsal Horn


Key influences upon signal propagation

- Excitatory neurotransmitters
 - Substance P, CGRP, glutamate
- NMDA channel activity
 - Glutamate binding
 - Altering channel activity
- Descending inhibitory tracts
 - NE/serotonin (5HT)
- Mu opioid receptor

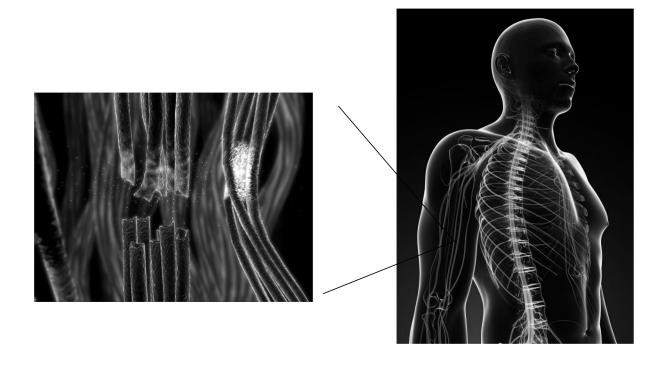
Dorsal Horn of the Spinal Cord Serves as a Relay Station in Pain Processing^{1,2}

GABA-ergic inhibitory interneuron


Decrease glutamate availability

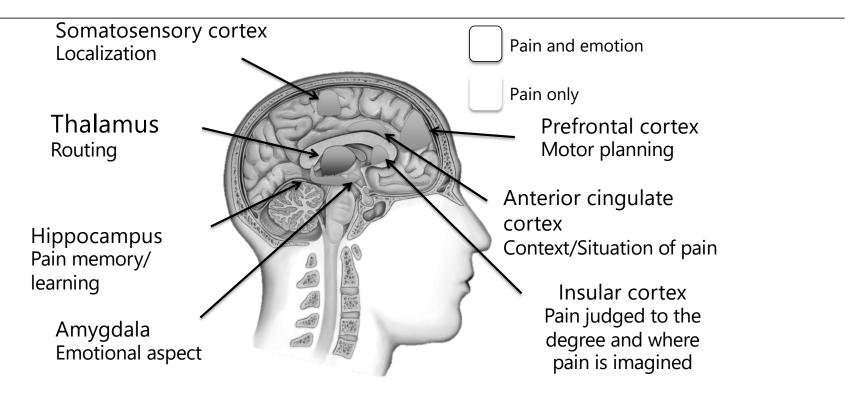
Adapted from 1. Baron R. Mechanisms of disease: neuropathic pain-a clinical perspective. *Nat Clin Pract Neurology*. 2006;2:95-106.

2. Woolf CJ. Pain: moving from symptom control toward mechanism-specific pharmacologic management. *Ann Int Med*. 2004;140:441-451.


Neuroplasticity: Neural Reorganization

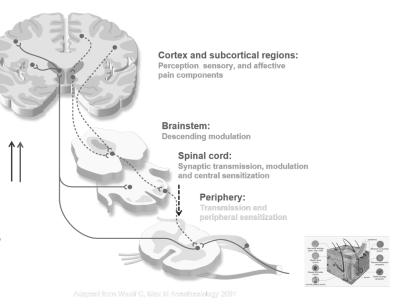
CTB = cholera toxin B

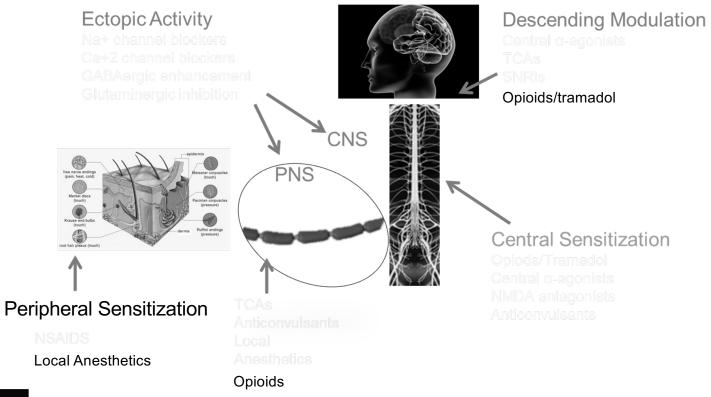
Neuroplasticity: Cross Talk


CTB = cholera toxin B

Central Sensitization: Neuroplasticity in Spinal Cord Processing

- Definition: altered function of neurons or synaptic activity
- Mechanisms of central sensitization may include:
 - Changes effecting glutamate / NMDA receptors activity
 - Reduced threshold for activation
 - Increased availability of glutamate
 - Increased influx of Na⁺/Ca⁺ (receptor open longer)
 - Modulation excitatory/Inhibitory neurotransmitters
 - Decreased tone descending inhibitory pathways²
 - Activation/migration of glial cells into the spinal cord³
 - Changes in the thalamus and primary somatosensory cortex⁴


Brain Regions Involved in Pain Processing


Common Pharmacologic Therapies

- Acetaminophen
- NSAIDS
- Antiepileptics
- TCAs
- SNRIs
- Topicals
- Muscle relaxants
- Opioids

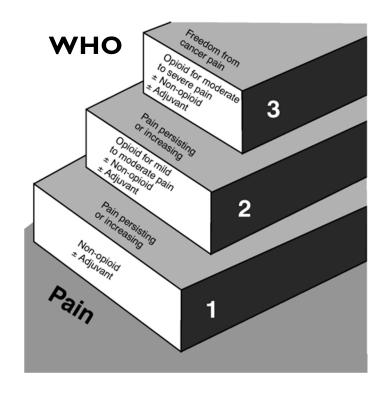
Pharmacological Targets in Pain

Nonpharmacologic Treatments Reliant on Pain Pathways

- Classic neuromodulation (Implantable spinal and extraspinal)
- External devices (transcutaneous)
 - Quell musculoskeletal pain (neck, back, etc)
 - Nerivio migra acute migraine
 - Cefaly acute migraine without aura
 - Livia menstrual cramps
 - ActiPatch musculoskeletal pain
 - ClearUP sinus pain
 - gammaCore migraine & cluster HA (COVID-19 emergency use respiratory system/asthma)

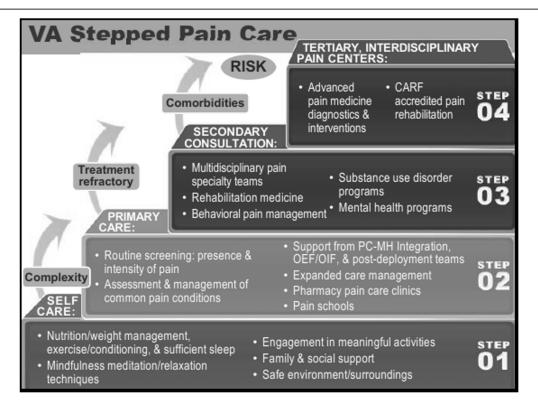
The Chronic Pain Armamentarium

Nonopioids


- Acetaminophen
- NSAIDs
- COX-2 inhibitors

<u>Opioids</u>

- Mu-opioid agonists
- Mixed agonist-antagonists


Adjuvant analgesics

- Antidepressants
- Anticonvulsants
- Topical agents/local anesthetics

VA DoD Stepped Pain Care Model

PCSS-O Webinar Implementation of the National Pain Strategy and Safer Opioid Prescribing:
A Military Perspective, Buckenmaier C (COL) ret, Aug 24, 2016

JAMA Intern Med. 2015;175(5):682-689. doi:10.1001/jamainternmed.2015.97

Adjuvant Analgesics: Topicals

Examples

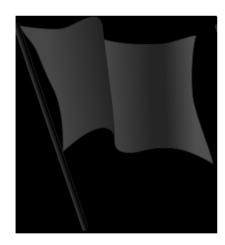
- Lidocaine patch (patch/gel)
- Capsaicin cream/patch
- Diclofenac (cream/liquid/gel/patch)
- Rubefacient (cream/patch/spray)

Mechanism of action

- Block sodium channels, inhibit generation of abnormal impulses by damaged nerves
- Depletion of peripheral small fibers and therefore Substance P release from sensory nerve endings, TRVP1 receptor agonist
- Target local inflammatory response
- Counterirritation, some with mild anti-inflammatory action

Objectives for Treating Pain

- Reduce overall signal by addressing the source
 - Treatment by eliminating the pathology
 - Mitigate the response at the source
- Interrupt or interfere with signal within pathway
 - Directly addressing steps in the pathway
- Reduce the overall excitatory response
- Increase the inhibitory response
- Decrease perception of the signals


Neuroplasticity Considerations

- Neuroplasticity can be a 2 way process, and should be considered reversable
- Can delay or slow the perceived response to pain treatment
- May play a role in amplification of pain perception in the presence of comorbidities
- Is often overlooked when caring for the patient

Case Study

- 54 year old with 3 year history of neck, shoulder and upper extremity pain following a lifting injury
 - Current medications
 - Fluoxetine
 - Milnacipran
 - Gabapentin
 - Clonazepam
 - Alprazolam
 - Methocarbamol
 - Tapentadol
 - Acetaminophen and propoxyphene
 - Zolpidem
 - Diclofenac topical
 - Acetaminophen

