

Pain Pathways Made Simple

David M Glick, DC, DAAPM, CPE

Disclosures

Nothing to disclose

Learning Objectives

- Differentiate between nociceptive and neuropathic pain
- Describe the process of pain transmission
- Identify the specific pain pathways that can be acted upon by pharmacotherapy and nonpharmacologic treatments

Classification of Pain

Good pain vs bad pain

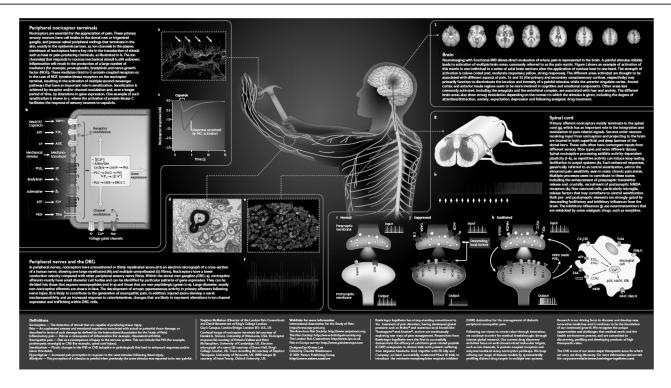
Clinical Pearl

Good Pain

Nociceptive pain: purposeful pain

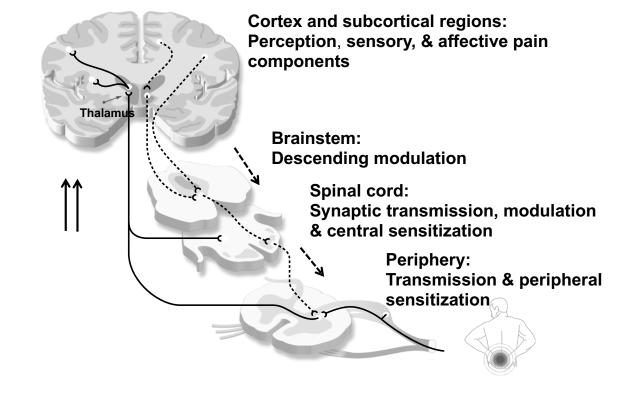
- -Eudynia: being pain linked to normal tissue function or damage
- -Nonmaldynic pain
- -Adaptive

Bad Pain


• Neuropathic pain: Nonpurposeful pain

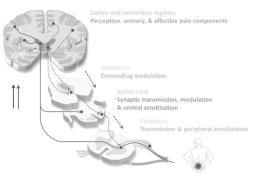
- -Maldynia: pain linked to disorder, illness or damage
- –Ie, may be abnormal, unfamiliar pain, assumed to be caused by dysfunction in PNS or CNS

Pain Mechanisms



Adapted from Nature Reviews – Neuroscience, Stephen McMahon & David Bennett, 2007.

General Anatomy of Pain



Adapted from Von Hehn CA, Baron R, Woolf CJ. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. *Neuron*. 2012; 23;73(4):638-652.

Pain Roadmap:

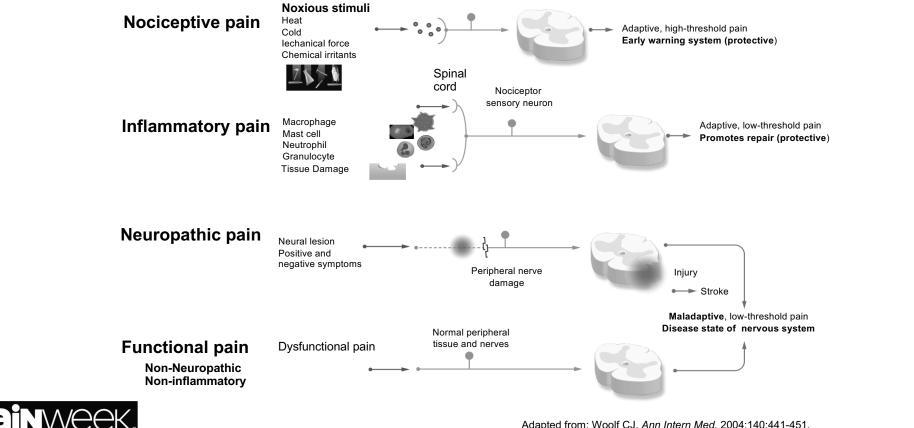
Peripheral and Central Nervous System Landmarks

- Physiologic process involving multiple areas
 of the nervous system
- Bidirectional
- Involves normal as well as pathological processes
- A sensory experience associated with affective and cognitive responses
- Dynamic (ie, occurring in real time)
- Adapts or changes in response to function "neuroplasticity"

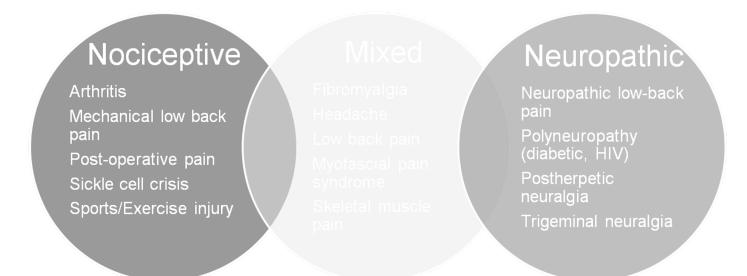
Gardner EP, et al. In: Kandel E, et al, eds. Principles of Neural Science. 4th ed. McGraw-Hill Medical; 2000; chapters 21-23.

Pathophysiologic Classification of Pain

- Nociceptive purposeful pain
 - Somatic or visceral linked to normal tissue function or commensurate with identifiable tissue damage
- Inflammatory pain Usually involves tissue damage

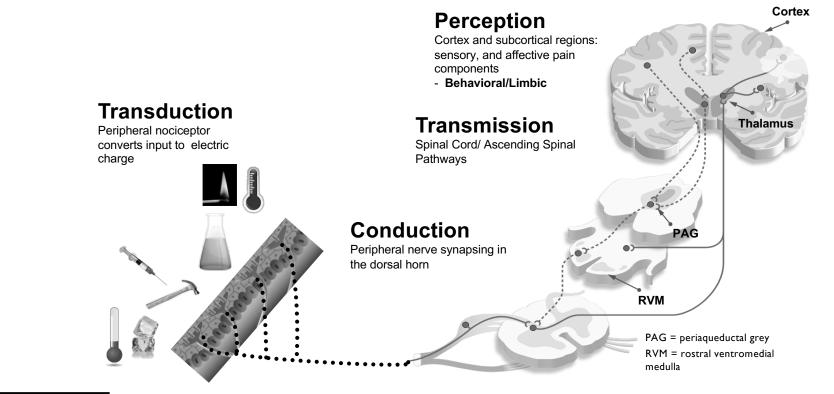

- Localized chemical soup of inflammatory mediators

- Neuropathic nonpurposeful pain
 - May be abnormal, unfamiliar pain, probably caused by dysfunction in PNS or CNS
- Functional Pain dysfunctional pain
 - Non-neuropathic, non-inflammatory, often ill defined

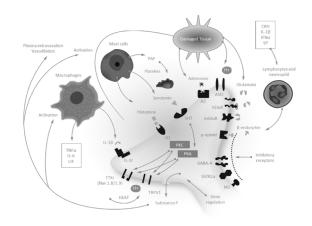

IASP. Proposed taxonomy changes 2008. www.iasp-pain.org/AM/Template.cfm?Section=Home&Template=/CM/ContentDisplay.cfm&ContentID=6633. November 2007. Vadivelu N, et al. Pain pathways and acute pain processing. In: Sinatra RS, et al, eds. *Acute Pain Management*. New York, NY: Cambridge University Press; 2009:3-20.

Classification of Pain

Adapted from: Woolf CJ. Ann Intern Med. 2004;140:441-451.


Nociceptive vs Neuropathic Pain

Portenoy RK, Kanner RM. In: Portenoy RK, et al, eds. Pain Management: Theory and Practice. Philadelphia, PA: FA Davis Company;1996:4. Galer BS, Dworkin RH. A Clinical Guide to Neuropathic Pain. Minneapolis, MN: McGraw-Hill Companies Inc; 2000:8-9.


Pain Pathway Steps

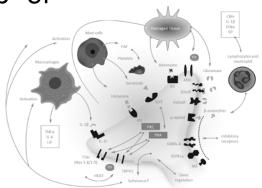
Painweek.

Adapted from Scholtz J, Woolf CJ, Nat Neuroscience, 2002,5:1062-1067.

Transduction: Processing at Peripheral Nerve Endings

- Conversion of mechanical, thermal or chemical stimuli into an electric charge
- Involves
 - Receptors activated directly by stimuli
 - Injury/inflammatory response

Adapted from Dougherty PM, et al. Neurochemistry of somatosensory and pain processing. In: Benzon H, et al, eds. *Essentials of Pain Medicine*. Philadelphia, PA; Saunders; 2011: chapter 2.


Peripheral Sensitization

After injury, a peripheral nervous system neuron becomes abnormally sensitive to stimuli, resulting in either or both

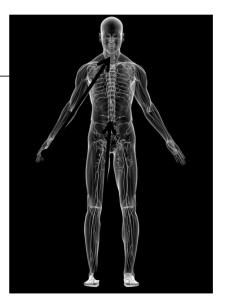
- Decreased threshold for activation
- Increased rate of firing

Mechanism of action*

- Tissue damage releases sensitizing "soup" of cytokines & neurotransmitters
- -COX-mediated PGE2 release
 - These events are thought to be based on a number of changes at the cellular/molecular level, including changes in receptors and ion channels.

Baron R. Mechanisms of disease: neuropathic pain--a clinical perspective. *Nat Clin Pract Neurol.* 2006;2(2):95-106. Figure: Adapted from Dougherty PM, et al. Neurochemistry of somatosensory and pain processing. In: Benzon H, et al, eds. *Essentials of Pain Medicine*. Philadelphia, PA; Saunders; 2011: chapter 2.

How Is Pain Transduced?


Conduction

Transfer of noxious impulses from primary nociceptors to cells in the spinal cord dorsal horn along the peripheral nerve.

Primary Nociception Fibers

Aδ – Fast/first pain
 Large diameter
 C-fibers – slow/second pain
 Small diameter

Non-nociception fibers (Proprioception) Aβ – Muscle spindle, touch & kinesthesia Larger diameter, myelinated

Vadivelu N, et al. Pain pathways and acute pain processing. In: Sinatra RS, et al, eds. Acute Pain Management. New York, NY: Cambridge University Press; 2009:3-20. Figure adapted from Binder A, et al. Disease mechanisms in neuropathic itch. Nat Clin Pract Neurol. 2008;4(6):329-333.

Primary Nociception

A-delta fibers

- Small receptive fields
- Thermal & mechanical
- Myelinated
- Rapidly conducting
 - 10-30 m/sec
- Large diameter

C-fibers

- Broad receptive fields
- Polymodal
- Unmyelinated
- Slower conducting
 - .5-2.0 m/sec
- Cross sensitized
- Small diameter

Transmission & Modulation

Thalamu

horn to surpaspinal targets

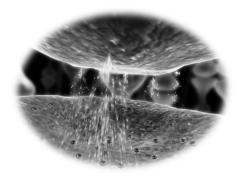
Fast (green) Neospinalthalamic **Slow** (yellow) Paleospinalthalamic

Descending inhibitory tracts (blue)

Increased activation leads to a decrease in volume control of incoming nociceptive signals reaching the brain

5-HT – Serotonin - both excitatory & inhibitory* (may not lead to pain relief) NE – Norepinephrine - Inhibitory

Adapted from Von Hehn CA, Baron R, Woolf CJ. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. *Neuron.* 2012; 23;73(4):638-652.


Transmission & Modulation

Excitatory Transmitters

- Substance P
- Calcitonin gene related peptide
- Aspartate, glutamate

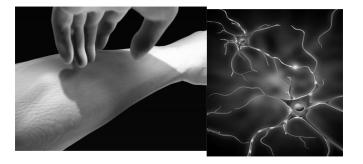
- Inhibitory Transmitters (descending inhibitory pathways)
 - GABA
 - Glycine
 - Somatostatin
 - a₂ agonists

Role of Neuronal Plasticity in Pain

- Nervous system changes in
 - Neuronal structure
 - Connections between neurons
 - Quantity/properties of neurotransmitters, receptors, ion channels
- Decreases body's pain inhibitory systems (increased pain)
- Injury, inflammation, and disease are culprits
- Produces short-term and permanent changes
- Pivotal to the development of hypersensitivity of inflammatory pain
- Enables NS to modify its function according to different conditions or demands placed upon it

How Acute Pain Becomes Chronic

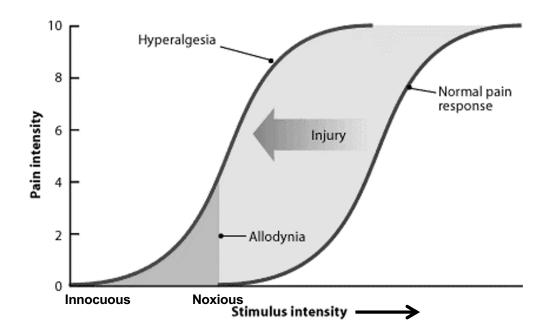
- Peripheral sensitization
 - Tissue damage releases sensitizing "soup" of cytokines & neurotransmitters
 - COX-mediated PGE2 release
 - Sensitized nociceptors exhibiting a decreased threshold for activation & increased rate of firing
- Central sensitization
 - Resulting from noxious input to the spinal cord
 - Resulting in hyperalgesia, & allodynia


Definitions

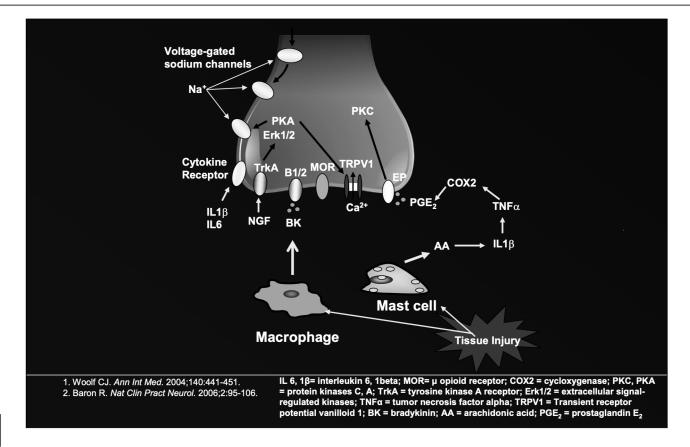
Hyperalgesia

Lowered threshold to different types of noxious stimuli

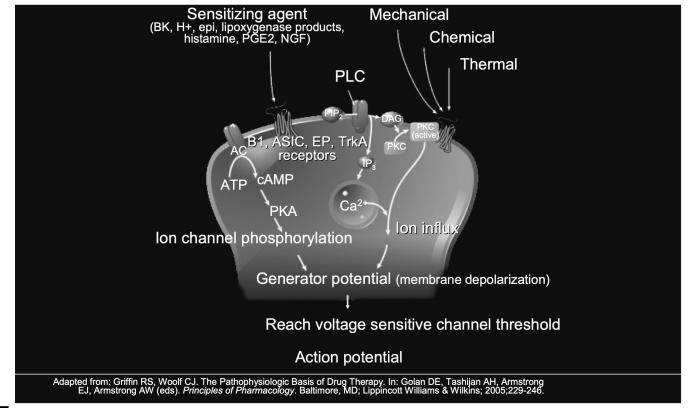
Allodynia


 Painful response to what should normally be nonpainful stimuli

Neuroplasticity in Pain Processing



1. Woolf CJ, Salter MW. Science. 2000;288:1765-1768.


- 2. Basbaum AI, Jessell TM. The perception of pain. In: Kandel ER, Schwartz JH, et al. eds. Principles of Neural Science. 4th ed. New York, NY: McGraw-Hill; 2000:479.
- 3. Cervero F, Laird JMA. Pain. 1996;68:13-23.

Neuroplasticity in Peripheral Pain Transmission

Peripheral Sensitization

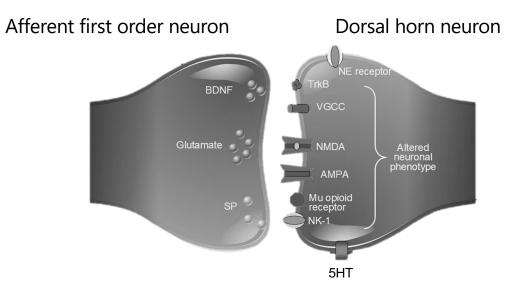
Central Sensitization

- Activation
 - "Wind up" of dorsal horn nociceptors
- Modulation
 - Excitatory/Inhibitory neurotransmitters
- Decreased central inhibition of pain transmission
 - NE/5HT

Prime role in chronic pain, particularly neuropathic pain

Definitions

- Wind Up
 - Causes long-term changes in nociceptive neurons, which become hyperexcitable such that they respond to lower stimuli
 - NMDA-type glutamate receptors play an important role in this process^{1,2,3,4}
 - Prolonged opening of the ion channels enables greater influx of calcium and sodium across the post-synaptic membrane and greater excitation of nociceptive neurons^{2,3}

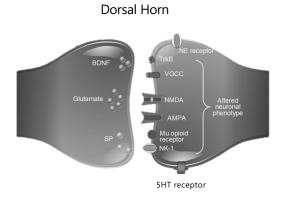


^{1.} Kandel ER, Schwartz JH, Jessell TM, editors. Principles of Neural Science (Fourth Edition). New York: McGraw Hill (Health Professions Division). 2000;472-491. 2. Millan MJ, Progress in Neurobiology 1999:57:1-164.

Biokenson AH. Neuroreport 2000;11:R17-21.

Millan MJ. Progress in Neurobiology 1999;57:1-164.
 Dickenson AH. Brit J Anaesthesia 1995;75:193-200.

First Order Synapse – Dorsal Horn

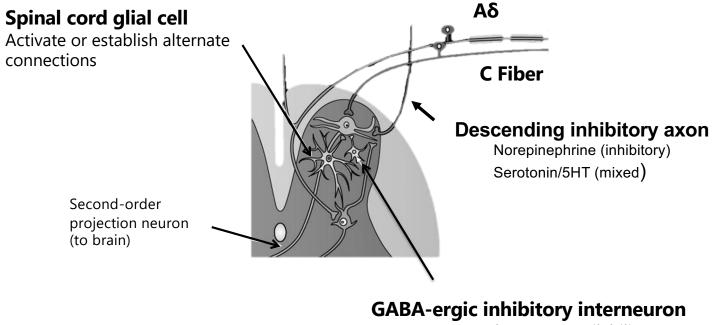


NK-1 = Neurokinin 1 receptor; AMPA = alpha-amino-3-hydroxy-5-methyle 4-isoxazolepropionic acid; NMDA = N-methyl-D-aspartic acid; VGCC = voltage gated sodium channel; TrkB = tropomyosin receptor kinase B; BDNF = Brain derived neurotrophic factor; SP = substance P

Adapted from Schlotz J, Woolf CJ. Nat Neuroscience. 2002;5:1062-1067

Central Sensitization

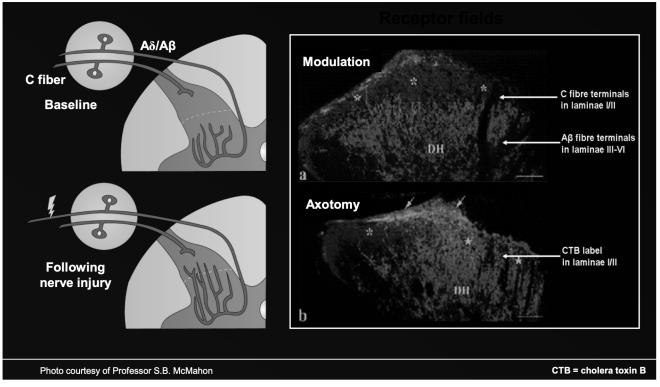
Key influences upon signal propagation


- Excitatory neurotransmitters
 - Substance P, CGRP, glutamate
- NMDA channel activity
 - Glutamate binding
 - Altering channel activity
- Descending inhibitory tracts
 - NE/serotonin (5HT)
- Mu opioid receptor

NK-1 = Neurokinin 1 receptor; AMPA = alpha-amino-3-hydroxy-5-methyle 4-isoxazolepropionic acid; NMDA = N-methyl-D-aspartic acid; VGCC = voltage gated sodium channel; TrkB = tropomyosin receptor kinase B; BDNF = Brain derived neurotrophic factor; SP = substance P; CRGP = Calcitonin gene related peptide

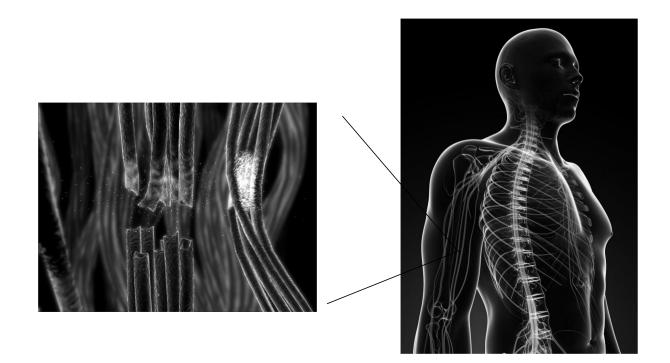
Adapted from Schlotz J, Woolf CJ. Nat Neuroscience. 2002;5:1062-1067

Dorsal Horn of the Spinal Cord Serves as a Relay Station in Pain Processing^{1,2}



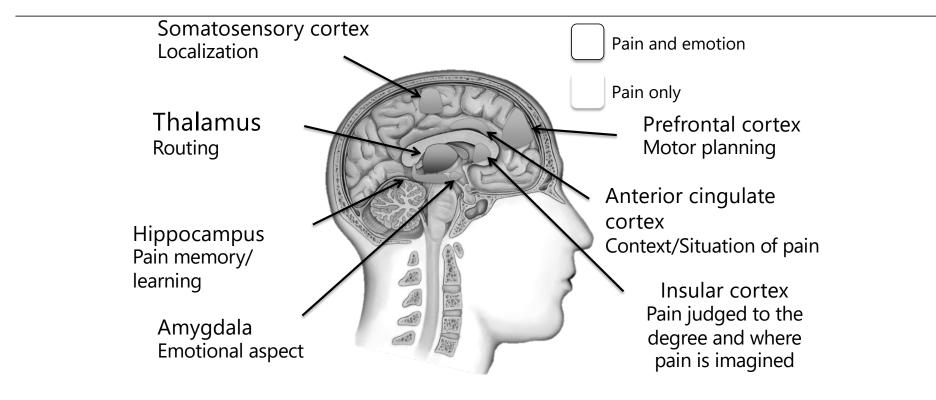
Decrease glutamate availability

Adapted from 1. Baron R. Mechanisms of disease: neuropathic pain-a clinical perspective. *Nat Clin Pract Neurology*. 2006;2:95-106. 2. Woolf CJ. Pain: moving from symptom control toward mechanism-specific pharmacologic management. *Ann Int Med*. 2004;140:441-451.


Neuroplasticity: Neural Reorganization

CTB = cholera toxin B

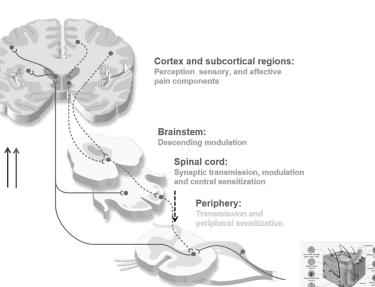
Neuroplasticity: Cross Talk


CTB = cholera toxin B

Central Sensitization: Neuroplasticity in Spinal Cord Processing

- Definition: altered function of neurons or synaptic activity
- Mechanisms of central sensitization may include:
 - Changes effecting glutamate / NMDA receptors activity
 - Reduced threshold for activation
 - Increased availability of glutamate
 - Increased influx of Na⁺/Ca⁺ (receptor open longer)
 - Modulation excitatory/Inhibitory neurotransmitters
 - Decreased tone descending inhibitory pathways²
 - Activation/migration of glial cells into the spinal cord³
 - Changes in the thalamus and primary somatosensory cortex⁴

Brain Regions Involved in Pain Processing



Apkarian AV et al, Eur J Pain 2005;9:463-484

Common Pharmacologic Therapies

- Acetaminophen
- NSAIDS
- Antiepileptics
- TCAs
- SNRIs
- Topicals
- Muscle relaxants
- Opioids

Adapted from Woolf C, Max M Anesthesiology 2001

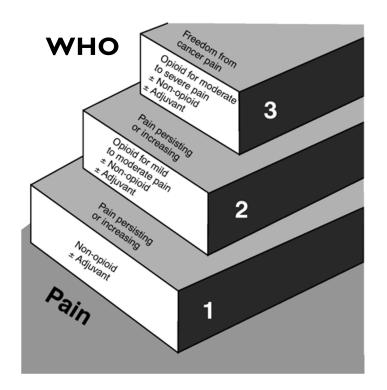
Pharmacological Targets in Pain

Nonpharmacologic Treatments Reliant on Pain Pathways

- Classic neuromodulation (Implantable spinal and extraspinal)
- External devices (transcutaneous)
 - -Quell musculoskeletal pain (neck, back, etc)
 - Nerivio migra acute migraine
 - Cefaly acute migraine without aura
 - Livia menstrual cramps
 - ActiPatch musculoskeletal pain
 - ClearUP sinus pain
 - -gammaCore migraine & cluster HA (COVID-19 emergency use respiratory system/asthma)

The Chronic Pain Armamentarium

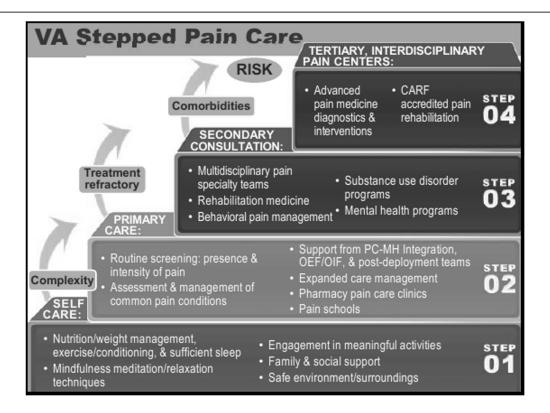
Nonopioids


- Acetaminophen
- NSAIDs
- COX-2 inhibitors

<u>Opioids</u>

- Mu-opioid agonists
- Mixed agonist-antagonists

Adjuvant analgesics


- Antidepressants
- Anticonvulsants
- Topical agents/local anesthetics

JC Ballantyne Oncologist 2003:8(6):567-75. © AlphaMed Press; WHO. 2005.

VA DoD Stepped Pain Care Model

PCSS-O Webinar Implementation of the National Pain Strategy and Safer Opioid Prescribing: A Military Perspective, Buckenmaier C (COL) ret, Aug 24, 2016 JAMA Intern Med. 2015;175(5):682-689. doi:10.1001/jamainternmed.2015.97

Adjuvant Analgesics: Topicals

Examples

- Lidocaine patch (patch/gel)
- Capsaicin cream/patch
- Diclofenac (cream/liquid/gel/patch)
- Rubefacient (cream/patch/spray)

Mechanism of action

- Block sodium channels, inhibit generation of abnormal impulses by damaged nerves
- Depletion of peripheral small fibers and therefore Substance P release from sensory nerve endings, TRVP1 receptor agonist
- Target local inflammatory response
- Counterirritation, some with mild anti-inflammatory action

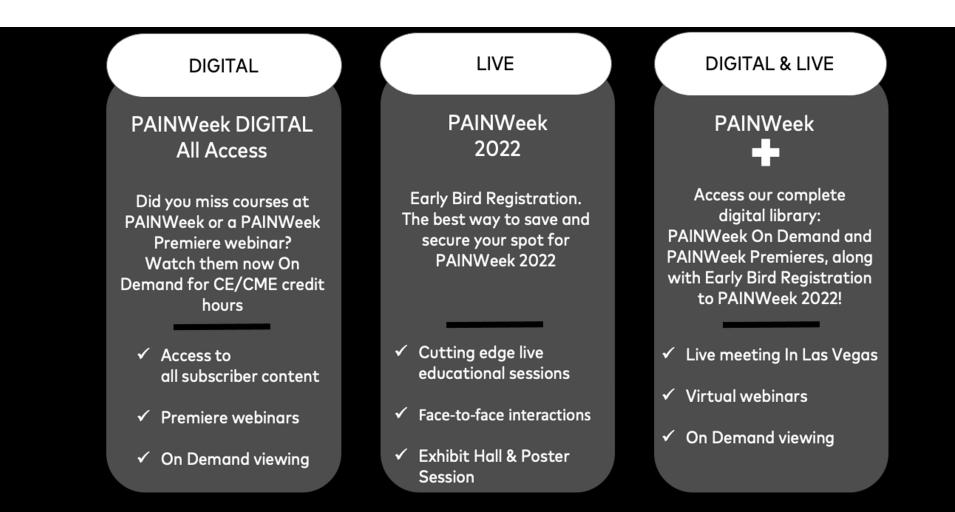
Painweek.

Objectives for Treating Pain

- Reduce overall signal by addressing the source
 - Treatment by eliminating the pathology
 - Mitigate the response at the source
- Interrupt or interfere with signal within pathway
 - Directly addressing steps in the pathway
- Reduce the overall excitatory response
- Increase the inhibitory response
- Decrease perception of the signals

Neuroplasticity Considerations

- Neuroplasticity can be a 2 way process, and should be considered reversable
- Can delay or slow the perceived response to pain treatment
- May play a role in amplification of pain perception in the presence of comorbidities
- Is often overlooked when caring for the patient



Case Study

- 54 year old with 3 year history of neck, shoulder and upper extremity pain following a lifting injury
 - Current medications
 - Fluoxetine
 - Milnacipran
 - Gabapentin
 - Clonazepam
 - Alprazolam
 - Methocarbamol
 - Tapentadol
 - Acetaminophen and propoxyphene
 - Zolpidem
 - Diclofenac topical
 - Acetaminophen

Save \$100 on any package! Click on the link in the chat box and, at Checkout, type in code PWP.