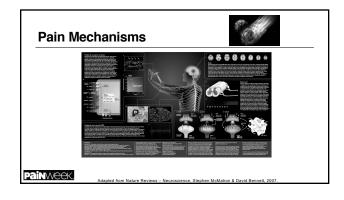
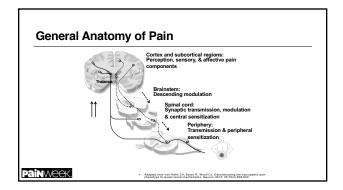
Pai	NVV	eek

Pain Pathways	Made	Sim	ple
---------------	------	-----	-----

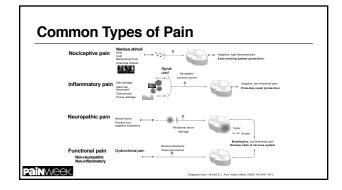
David M Glick, DC, DAAPM, CPE

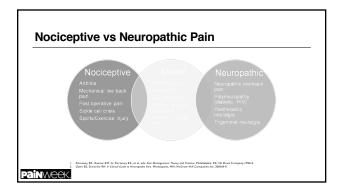
Disclosures

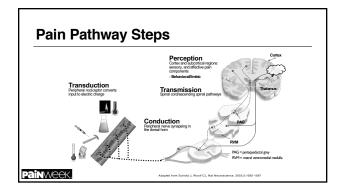

Nothing to Disclose

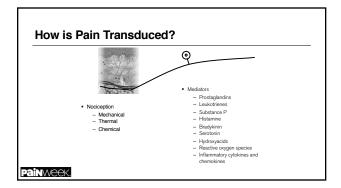

Painweek.

Learning Objectives


- Differentiate between nociceptive and neuropathic pain
- Describe the process of pain transmission
- Identify the specific pain pathways that can be acted upon by common pharmacotherapy classes


	7
Classification of Pain	-
■Good pain vs bad pain	
<i>»</i>	
Clinical Pearl	-
Painweek.	
	_
	٦
Good Pain	-
 Nociceptive pain: purposeful pain Eudynia—pain linked to normal tissue function or damage 	
-Nonmaldynic pain	
-Adaptive	
	-
Painweek.	
	-
]
Bad Pain	
Neuropathic pain: nonpurposeful pain	
-Maldynia-pain linked to disorder, illness or damage	
-ie, may be abnormal, unfamiliar pain, assumed to be caused by	
dysfunction in PNS or CNS	
Painweek.	

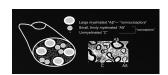



Pain Roadmap: Peripheral and Central Nervous System Landmarks Physiologic process involving multiple areas of the nervous system Bidirectional Involves normal as well as pathological processes A sensory experience associated with affective and cognitive responses Dynamic (ie, occurring in real time) Adapts or changes in response to function—"neuroplasticity"

Transduction: Processing at Peripheral Nerve Endings - Conversion of mechanical, thermal or chemical stimuli into an electric charge - Involves - Receptors activated directly by stimuli - Injury/inflammatory response

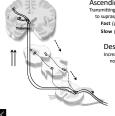
Conduction • Conduction impulses with primary nociceptors to the spinal cord (dorsal horn) along the peripheral nerve

Primary Nociception


- A-delta fibers
 - Small receptive fields
- Thermal & mechanical
- Myelinated
- Rapidly conducting
 10-30 m/sec
- Large diameter

- C-fibers
 - Broad receptive fields
 - Polymodal
 - Unmyelinated
 - Slower conducting • .5-2.0 m/sec
 - Cross sensitized

Peripheral Pain Nociceptors



 $A\beta-$ muscle spindle secondary endings, touch, and kinesthesia $A\delta-$ pain, temperature, crude touch, and pressure

Painweek.

Basiticaum A, Jessell T. The perception of Pain, In Kendal E, Schwartz J, Principles of Neural Science 4th ed, New York, McGraw Hill, 2000, 452-483.

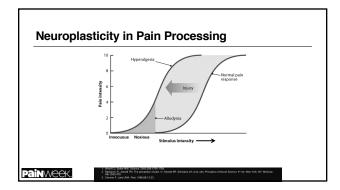
Transmission & Modulation

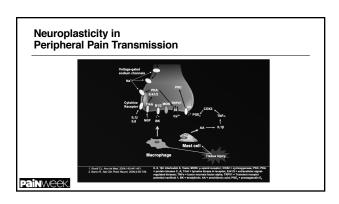
Ascending nociceptive pathways
Transmitting nociceptive impulses from the dorsal horn
to supraspinal targets
Fast (green) neospinalthalamic
Slow (yellow) paleospinalthalamic

Descending inhibitory tracts (blue) Increase or decrease volume control of incoming nociceptive signals reaching the brain 5-HT—serotonin NE—norepinephrine

Adapted from Yon Hehn CA, Saron R, Woolf CJ. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron. 2012; 23;73(4):t08-452. Painweek.

How is Pain Conducted and Transmitted?	
DESAL ROOT (GLION	
Excitatory transmitters Substance P Calcitonin gene related peptide Aspartate, glutamate Somatostatin	
– α: agonists	
Pain week.	
	1
Role of Neuronal Plasticity in Pain	
Nervous system changes in Neuronal structure Connections between neurons	
- Quantity/properties of neurotransmitters, receptors, ion channels • Decreases body's pain inhibitory systems (increased pain) • Injury, inflammation, and disease are culprits	
Produces short-term and permanent changes Pivotal to the development of hypersensitivity of inflammatory pain	
 Enables NS to modify its function according to different conditions or demands placed upon it 	


How Acute Pain Becomes Chronic


- Peripheral sensitization
 - Tissue damage releases sensitizing "soup" of cytokines & neurotransmitters

 - COX-mediated PGE2 release
 Sensitized nociceptors exhibiting a decreased threshold for activation & increased rate of firing
- Central sensitization—resulting from noxious input to the spinal cord Resulting in hyperalgesia, & allodynia

Painweek.

 Hyperalgesia 	Allodynia
 Lowered threshold to different types of noxious stimuli 	 Painful response to what should normally be nonpainful stimuli

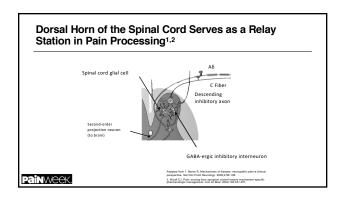
Sensitizing agent Mechanical (BK, H+, pti, lipoxygeniate products, histoarine, PGEZ, NGF) Chemical
histamine, PGE2, NGF) Chemical
PLC Thermal
ATP CAMP POA To mining the poach of the poa
Reach voltage sensitive channel threshold
Action potential

Central Sensitization

- Activation
 "Wind up" of dorsal horn nociceptors
 Modulation
 Excitatory/Inhibitory neurotransmitters
 Decreased central inhibition of pain transmission
 NEED TO THE • NE/5HT

Prime role in chronic pain, particularly neuropathic pain

Painweek.


Definitions

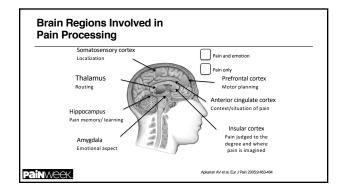
- Wind Up
 - Causes long-term changes in nociceptive neurons, which become hyperexcitable such that they respond to lower stimuli
 - NMDA-type glutamate receptors play an important role in this process^{1,2,3,4}
 - Prolonged opening of the ion channels enables greater influx of calcium and sodium across the post-synaptic membrane and greater excitation of nociceptive neurons^{2,3}

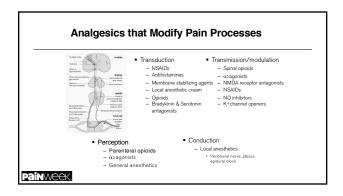
	 Kandel ER, Schwartz JH, Jessell TM, editors. Principles of Neural Science (Fourth New York: McGraw Hill (Health Professions Division). 2000:472-491.
	2. Millan MJ. Progress in Neurobiology 1999;57:1-164.
Painweek.	3. Dickenson AH. Brit J Ansesthesis 1995;75:193-200.
	4. Suzuki R and Dickenson AH. Neuroreport 2000;11:R17-21.

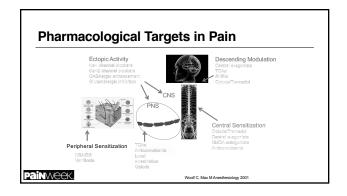
Central	Sensitization	
	Afferent first order neuron	Dorsal horn neuron
	Oxer Columne of the C	NOCE Agent A
	methyl-0-aspartic acid; VGCC = voltage gated so	ino-à-dystraup-6-methylie d-isasazalegropicnic acid; NMOA = N- sliven channel; rain derived neurotrophic tuctor; SP = substance P
Painweek.		Adapted from Schlotz J, Woolf CJ. Nat Neuroscience. 2002;5:1062-1067

Central Sensitization Key influences upon signal propagation • Excitatory neurotransmitters • Substance P, CGRP, glutamate • MNDA channel activity • Glutamate binding • Altering channel activity • Descending inhibitory tracts • NE/Serotonin (SHT) • Mu opioid receptor MAIL * STANDA CHANNEL TRACKS* Market Standard Company of Annie Comp

	Receptor fields
C fiber d Baseline	Modulation Characteristics State temporal Actions Characteristics Actions Characteristics Characteris
nerve injury	b 988

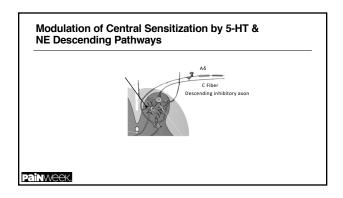

CTB + challers have B	

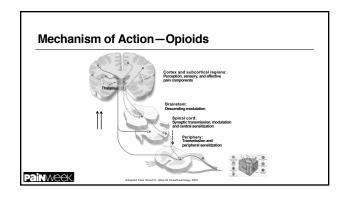

Central Sensitization: Neuroplasticity in Spinal Cord Processing


- Definition: altered function of neurons or synaptic activity
- Mechanisms of central sensitization may include:
- Changes affecting glutamate/NMDA receptors activity
 Reduced threshold for activation
 Increased availability of glutamate
 Increased influx of Na-/Car (receptor open longer)
 Modulation—excitatory/Inhibitory neurotransmitters
- Decreased tone—descending inhibitory pathways²
 Activation/migration of glial cells into the spinal cord³
- Changes in the thalamus and primary somatosensory cortex⁴

Painweek.

Mannian R.J. Woolf C.J.: Clin J Pain. 2050;16(3):5151-5153. 2. Ossipov MH, et al. Ann NY Acad Sci. 2000;908:12-24.
 Wieseler-Frank J, et al. Neurosignatz. 2005;14:166-174. 4. Guilbaud G, et al. Exp Brain Rez. 1992;92:127-245.


The Chronic Pain Armamentarium Nonopioids - Acetaminophen - NSAIDs - COX-2 inhibitors Opioids - Mu-opioid agonists - Mived agonist-antagonists Adjuvant analgesics - Anticorvulsants - Anticorvulsants - Topical agents/local anesthetics


VA DOD Stepped Pain Care Model VA Stepped Pain Care Siss Commissioner Available of the Care of the

Common Pharmacologic Therapies Acetaminophen NSAIDS Antiepileptics Antiepileptics TCAs SNRIs Topicals Muscle relaxants Opioids

Nonopioids: Acetaminophen	
Example - Acetaminophen	
Mechanism of action	
 Inhibits prostaglandin production in CNS; antipyretic activity No effect on blocking peripheral prostaglandin production; no anti-inflammatory or antirheumatic activity 	
no anti-inflammatory or antirheumatic activity FDA warning	
Potential severe liver damage if over-used Stevens-Johnson Syndrome & toxic epidermal necrolysis	
Pain week.	
	1
Nonopioids: NSAIDs	
Examples - Acetylated (aspirin); nonacetylated (diffunisal);	
acetic acid (diclofenac); propionic acid (naproxen); fenamic acid (mefenamic acid); enolic acids (proxicam); nonacidic (nabumetone); ibuprofen, selective COX-2s (celecoxib)	
ibuprofen, selective COX-2s (celecoxib) Mechanism of action	
Exhibit both peripheral and central effects; anti-inflammatory and analgesic effects	
 Inhibition of cyclooxygenase and prostaglandin production 	
 Inhibition of leukotriene B4 production Lipoxins (signaling resolution of inflammation) 	
Painweek.	
	1
Opioids	
Examples	
Mechanism of action - Bind to opioid receptors in the central nervous system (CNS) to	
inhibit transmission of nociceptive input from periphery to spinal cord - Activate descending pathways that modulate transmission in	
spinal cord Alter limbic system activity; modify sensory and affective	
pain aspects	

Adjuvant Analgesics: Tricyclic Antidepressants

Examples

- Amitriptyline, desipramine, doxepin, imipramine, nortriptyline Mechanism of action
 - Reduction in action potential firing of sodium channel activity
 - Inhibition of reuptake of NE and 5-HT
 - Analgesia is independent of antidepressant function
 - High side effect profile (tolerability)
 - Cardiotoxic (overdose)

Painweek.

TCAs and SNRIs Pharmacological Properties

Painweek.

ttp://pharmacologycorner.com

SSRIs (Selective Serotonin Reuptake Inhibitors)

Examples

- –Citalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline $\underline{\textit{Mechanism of action}}$
 - -Selectively inhibit 5-HT reuptake without affecting NE

Therefore, no pain relief expected!

Serotonin

- International Union of Pure and Applied Chemistry nomenclature

 5-Hydroxytryptamine (5-HT)

 - $-\underline{\text{Monoamine neurotransmitter}}, \text{biochemically derived from}\underline{\text{tryptopha}} n$
 - Receptors are a group of G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LGICs) found in the central and peripheral nervous systems

Serotonin/5-HT Receptors

Family	Type	Mechanism	Potential
5-HT ₁	G/Go-protein coupled.	Decreasing cellular levels of cAMP.	Inhibitory
5-HT2	Gq/G11-protein coupled.	Increasing cellular levels of IP3 and DAG.	Excitatory
5-HT3	Ligand-gated Na ⁺ and K ⁺ cation channel.	Depolarizing plasma membrane.	Excitatory
5-HT4	G ₈ -protein coupled.	Increasing cellular levels of cAMP.	Excitatory
5-HT5	G/G _o -protein coupled. ^[4]	Decreasing cellular levels of cAMP.	Inhibitory
5-HT6	G _s -protein coupled.	Increasing cellular levels of cAMP.	Excitatory
5-HT7	G _s -protein coupled.	Increasing cellular levels of cAMP.	Excitatory

Painweek.

http://en.wikipedia.org/wiki/5-HT_receptor

Serotonin/5-HT Receptors

- 5-HT1a (blood ves/CNS)
 Addiction
 Aggression
 Anxiety
 Appetite
 BP
 Cardiovascular function
 Emesis
 Heart rate
 Impulsitity
 Memory
 Mood
 Nausea
 Nociception
 Penile erection
 Pupil dilatation

 - Pupil dilatation

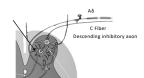
 - 5-HT5a & 5-HT6 (CNS)
 Locomotion
 Sleep
 Anxiety
 Cognition
 Learning
 Memory
 Mood

Painweek.

5-HT1a (cont'd)
 Respiration
 Sexual behavior
 Sleep
 Sociability
 Thermoregulation

SNRIs (Serotonin/Noradrenaline Reuptake Inhibitors)

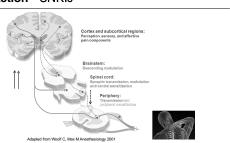
Examples


-Duloxetine, milnacipran, and venlafaxine

Mechanism of action

- -Block reuptake of 5-HT and NA
 - (Better tolerated, lower tendency for drug-drug interactions, better overdose safety)

Painweek.

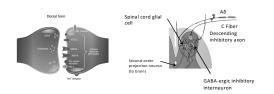

Modulation of Central Sensitization by 5-HT & NE Descending Pathways

Painweek.

Painweek.

Site of Action—SNRIs

Adjuvant Analgesics: Antiepileptics


Gabapentin, pregabalin,* carbamazepine, phenytoin, divalproex sodium, clonazepam, levetiracetam, topiramate, lamotrigine

Mechanism of action

- -Suppress neuronal hyperexcitability via
- Reducing neuronal influx of sodium (Na+) and calcium (Ca+ +)
 Direct/indirect enhancement of GABA inhibitory effects
- Reduce activity of glutamate and/or blocking NMDA receptors
- Binds the $\alpha2\delta$ subunit of voltage gated Ca+ channels, inhibit NT release

Painweek.

Site of Action—Antiepileptics

Painweek.

Adjuvant Analgesics: Topicals

- Lidocaine patch 5%, eutectic, mixture of lidocaine and prilocaine
- Capsaicin cream/patch
- Diclofenac (cream/liquid/gel/patch)

- <u>Mechanism of action</u>

 Block sodium channels and inhibit generation of abnormal impulses by damaged nerves
 - Depletion of peripheral small fibers and therefore substance P release from sensory nerve endings
 - Target local inflammatory response

			_					
N/II I	اعوا	_	ĸ	ᅀ	ลง	/a	nt	œ

- Decrease tone of skeletal muscles
- Subclasses
 - Neuromuscular blockers
 - Act at the neuromuscular junction
 - Often used in surgery to cause temporary paralysis
 - Spasmolytics
 - · Centrally acting

Painweek.

Muscle Relaxants—Spasmolytics

- Enhancing the level of inhibition
- Mimicking or enhancing the actions of endogenous inhibitory substances, such as GABA
- Reducing the level of excitation
- Common examples
 - Cyclobenzaprine (TCA) methocarbamol, carisoprodol (barbiturate like effects), tizanidine (a-2 agonist), baclofen (GABA agonist), orphenadrine (diphenhydramine/antihistamine)
- Common adverse effects
 - Sedation, lethargy & confusion (cyclobenzaprine), dependence (carisoprodol)

Painweek.

Case Study

- - - Tapentadol
 Acetaminophen and propoxyphene
 Zolpidem
 Diclofenac topical

Importance for Understanding Pain Mechanisms

- Allow for rational rather than empirical approach to pain control
 Foster the development of diagnostic tools to identify specific pain mechanisms
- pain mechanisms

 Facilitate pharmacotherapies that act on specific pain pathways and mechanisms

 Reduce the number of pharmacotherapies and incidence of drug-related adverse events (rationale polypharmacy)

 Enhances use of nonpharmacologic treatments

 Improve overall patient care and outcome

 Tailoring treatment based on the individual patient and pain type

 Do not forget to look for the spear

Σ.	٢	,	۱۸	Æ	9	K